Hierarchical Classification of Ten Skin Lesion Classes

نویسندگان

  • Carlo Di Leo
  • Vitoantonio Bevilacqua
  • Lucia Ballerini
  • Robert Fisher
  • Ben Aldridge
  • Jonathan Rees
چکیده

This paper presents a hierarchical classification system based on the kNearest Neighbors (kNN) classifier for classification of ten different classes of Malignant and Benign skin lesions from color image data. Our key contribution is to focus on the ten most common classes of skin lesions. There are five malignant: Actinic Keratosis (AK), Basal Cell Carcinoma (BCC), Squamous Cell Carcinoma (SCC), Melanoma (MEL), Intraepithelial Carcinoma (IEC) and five benign: Melanocytic Nevus / Mole (ML), Seborrhoeic Keratosis (SK), Dermatofibroma (DF), Haemangioma (VASC), Pyogenic Granuloma (PYO). Moreover, we use only high resolution color images acquired using a standard camera (nondermoscopy). Our image dataset contains 1300 lesions belonging to ten classes (45 AK, 239 BCC, 331 ML, 88 SCC, 257 SK, 76 MEL, 65 DF, 97 VASC, 24 PYO and 78 IEC).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions

This chapter proposes a novel hierarchical classification system based on the K-Nearest Neighbors (K-NN) model and its application to nonmelanoma skin lesion classification. Color and texture features are extracted from skin lesion images. The hierarchical structure decomposes the classification task into a set of simpler problems, one at each node of the classification. Feature selection is em...

متن کامل

A Hierarchical Classification Method for Breast Tumor Detection

Introduction Breast cancer is the second cause of mortality among women. Early detection of it can enhance the chance of survival. Screening systems such as mammography cannot perfectly differentiate between patients and healthy individuals. Computer-aided diagnosis can help physicians make a more accurate diagnosis. Materials and Methods Regarding the importance of separating normal and abnorm...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Cutaneous lymphomas and pseudolymphomas: A ten-year study at Emam Reza and Omid hospitals in Mashhad, using immunohistochemical and new classification methods

Background: Cutaneous lymphomas are monoclonal neoplastic proliferations of immune cells most frequently T or B cells that infiltrates skin. Development of new diagnostic methods, particularly those for immunophenotyping, have substantially changed classification of these neoplasms. These reasons prompted us to perform this study. Objective: To re-classify cutaneous lymphomas and pseudoly...

متن کامل

Hierarchical Content-Based Image Retrieval of Skin Lesions

This paper proposes a novel hierarchical content-based image retrieval system and its application to skin lesion images. Five common classes of skin lesions, including two non-melanoma cancer types, are used. Colour and texture features are extracted from lesions. Feature selection is embedded in a hierarchical framework that chooses the most relevant feature subsets by comparing different simi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015